People Analytics Will Be Important For The Future of HR

People Analytics Will Be Important For The Future of HR

Without data you’re just another person with an opinion.”- W. Edwards Deming

The world has become tech-based. That’s old news. But what’s new is the emergence and influence of big data and analytics. Data analysts are in demand and for good reason. Study by IBM shows that almost 2.5 quintillion bytes of data is created every day. And somebody needs to draw conclusions from all this data generation.

Human Resources also has finally realised the importance of data. Big data in the form of people analytics is being increasingly used to recruit, retain and make important decisions related to employees.

What Is People Analytics?

People analytics or HR analytics or talent analytics refers to data that managers use to understand and make decisions about their workforce. It uses statistics, maths and technology to large sets of talent data and uses it for managing these talents. Thus, people analytics is the data-driven approach to managing people at work.

Both small and big organisations can use people analytics to manage their workforce and improve their levels of employee engagement. Companies looking for better return on their investments in people will greatly benefit from people analytics (which is all companies).

The Problem

A research by Bersin found that 78 percent of large companies have rated analytics a “urgent” while only 7% of organisations feel they have “strong” HR data analytics resources.

In the 2017 People Analytics world conference held in Wharton, experts said that the success of people analytics lies both in data and common sense. Ross Sparksman, global head of workforce planning at Facebook says people analytics is,

             “50% cold, hard statistics and 50% common sense.”

They say the issue faced by HR experts isn’t that they don’t have the data available to them. The problem is that they aren’t asking the right questions. In fact, the biggest challenge isn’t collecting data. It’s building the qualitative skills required to analyse, interpret and communicate that data.

The Benefits Of People Analytics

Task Automation

HR does a lot of work that is repetitive and time-consuming. In fact, research by EY shows that 93% of the time spent by HR personnel is on repetitive tasks. Having data analysis softwares can help make the task easier. Softwares like Robotic Process Automation (RPA) do work like filing, copying and assist on complex multi-step processes. As a result, this lets HR leaders focus on other important tasks like interpretation and decision making.

Improve Employee Experience

When you know what your employees want, you make better people decisions. With tools like behavioral analytics, you can get insights into your employee’s behavior. This can further help you to take actionable steps in favour of your employees’ needs and wants. Consequently, this will result in high performance and improved employee experience.

Unbiased Decision Making

Because people analytics deals with a lot of hard data, it enables leaders and managers to make decisions fair and rational decisions. People analytics allows leaders to make unbiased data-driven decisions and not based on their personal preferences and prejudices.

How HR Can Use It

So, how can hr departments and business leaders use data correctly?

Make People Decisions

Data collection enables Human Resources to understand their employees, i.e their humans. Data collection helps to make better decisions about HR functions like recruitment, attrition rates, performance management and talent management. It provides critical findings and insights for analysis and interpretation.

Recruit Efficiently

Hiring people can be a long and tiring work. Going through countless resumes manually to shortlist suitable candidates is difficult and laborious. Moreover, doing it manually also makes the process prone to errors and is time consuming.The solution to this is recruitment analytics. Companies design algorithms which allow recruiters to find candidates, mine data from social media, infer their preferences and track and measure their performance.

Analyse High Employee Turnover

The reasons for turnover may vary. The start to tackle this issue lies in figuring out where the problem lies and the impact it is having. Moreover, machine learning algorithms can figure out why employees are leaving and even figure out the employee who is most likely to leave. For example, Micron, found that their workers were more likely to leave because they felt their job description didn’t clearly specify their objectives and goals.

Measure Performance

Performance management can be done by predictive analytics. Predictive analytics is the practice of extracting information from already existing data to determine relations, patterns and trends that could arise. In addition, organisations can use it to identify traits which reflect in an individual’s or team’s performance. It also gives insight into the preferences of the employee and the factors which might help boost their productivity.

Final Words

It’s not just enough to extract and mine mounds of data. You need to know how to make sense from that data. Leaders or HR teams should have a basic knowledge of data literacy and the ability to analyse, interpret and draw conclusions from that data.

This article is written by Shreya Dutta who is a content writer and marketer at Vantage Circle. She is passionate about all things literature and entrepreneurship. To get in touch, reach out to editor@vantagecircle.com